MgATP activates the beta cell KATP channel by interaction with its SUR1 subunit.

نویسندگان

  • F M Gribble
  • S J Tucker
  • T Haug
  • F M Ashcroft
چکیده

ATP-sensitive potassium (KATP) channels in the pancreatic beta cell membrane mediate insulin release in response to elevation of plasma glucose levels. They are open at rest but close in response to glucose metabolism, producing a depolarization that stimulates Ca2+ influx and exocytosis. Metabolic regulation of KATP channel activity currently is believed to be mediated by changes in the intracellular concentrations of ATP and MgADP, which inhibit and activate the channel, respectively. The beta cell KATP channel is a complex of four Kir6.2 pore-forming subunits and four SUR1 regulatory subunits: Kir6.2 mediates channel inhibition by ATP, whereas the potentiatory action of MgADP involves the nucleotide-binding domains (NBDs) of SUR1. We show here that MgATP (like MgADP) is able to stimulate KATP channel activity, but that this effect normally is masked by the potent inhibitory effect of the nucleotide. Mg2+ caused an apparent reduction in the inhibitory action of ATP on wild-type KATP channels, and MgATP actually activated KATP channels containing a mutation in the Kir6.2 subunit that impairs nucleotide inhibition (R50G). Both of these effects were abolished when mutations were made in the NBDs of SUR1 that are predicted to abolish MgATP binding and/or hydrolysis (D853N, D1505N, K719A, or K1384M). These results suggest that, like MgADP, MgATP stimulates KATP channel activity by interaction with the NBDs of SUR1. Further support for this idea is that the ATP sensitivity of a truncated form of Kir6.2, which shows functional expression in the absence of SUR1, is unaffected by Mg2+.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A universally conserved residue in the SUR1 subunit of the KATP channel is essential for translating nucleotide binding at SUR1 into channel opening

The sulphonylurea receptor (SUR1) subunit of the ATP-sensitive potassium (KATP) channel is a member of the ATP-binding cassette (ABC) protein family. Binding of MgADP to nucleotide-binding domain 2 (NBD2) is critical for channel activation.We identified a residue in NBD2 (G1401) that is fully conserved among ABC proteins and whose functional importance is unknown. Homology modelling places G140...

متن کامل

Activation of the KATP channel by Mg-nucleotide interaction with SUR1

The mechanism of adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channel activation by Mg-nucleotides was studied using a mutation (G334D) in the Kir6.2 subunit of the channel that renders K(ATP) channels insensitive to nucleotide inhibition and has no apparent effect on their gating. K(ATP) channels carrying this mutation (Kir6.2-G334D/SUR1 channels) were activated by MgATP and MgADP...

متن کامل

ATP and Sulfonylurea Linkage in the KATP Channel Solves a Diabetes Puzzler

A t 30,000 feet, ATP-sensitive potassium (KATP) channels are seen coupling the metabolic status of the cell to its electrical excitability. But down at the molecular level of the b-cell, there is a lot more coupling going on in exactly how the KATP channel does this. Coupling is developed in the conceptual framework of linkage (1), which thermodynamically quantifies how conformational states of...

متن کامل

Sulfonylureas suppress the stimulatory action of Mg-nucleotides on Kir6.2/SUR1 but not Kir6.2/SUR2A KATP channels: A mechanistic study

Sulfonylureas, which stimulate insulin secretion from pancreatic β-cells, are widely used to treat both type 2 diabetes and neonatal diabetes. These drugs mediate their effects by binding to the sulfonylurea receptor subunit (SUR) of the ATP-sensitive K(+) (KATP) channel and inducing channel closure. The mechanism of channel inhibition is unusually complex. First, sulfonylureas act as partial a...

متن کامل

Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation

BACKGROUND ATP-sensitive potassium (KATP) channels in neurons regulate excitability, neurotransmitter release and mediate protection from cell-death. Furthermore, activation of KATP channels is suppressed in DRG neurons after painful-like nerve injury. NO-dependent mechanisms modulate both KATP channels and participate in the pathophysiology and pharmacology of neuropathic pain. Therefore, we i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 12  شماره 

صفحات  -

تاریخ انتشار 1998